====== Analytic Z-spectra water, CEST - pulsed spin-lock====== Here you find analytic solutions of the Bloch-McConnell equations describing Z-spectra under pulsed spin-lock irradiation. This is the R-based //ISAR2//-model as published in **Roeloffs et al. (2014), NMR Biomed., 28, 40–53, [[http://www.ncbi.nlm.nih.gov/pubmed/25328046|doi: 10.1002/nbm.3192]].**. {{ :z_plsd_b1.png?direct&300|}} It is a very lean code to give you a tool illustrating the principal behaviour of a CEST effect and its interaction with the direct water saturation. Dowload zipped Matlab implementations [[https://github.com/cest-sources/Z-pSL/archive/master.zip|here]] or find the package on [[https://github.com/cest-sources/Z-pSL|github.com/cest-sources/Z-pSL]] ====== Short Documentation ====== {{youtube>-HqhzBM8zOw?640x480|Tutorial: 2 minutes for 3 pools}} ===== BATCH_Z_cw ===== First the pool parameters are defined in the parameter struct P: %% SETUP %pool system parameters %water pool A P.R1A=1/3; % longitudinalrelaxation rate [s^-1] P.R2A=2; % transversal relaxation rate [s^-1] P.dwA=0; %deltaW_A in [ppm] %CEST pool B P.fB=0.001; % proton fraction: [water protons]/[CEST agent protons] P.kBA=200; % exchange rate [s^-1] P.dwB=1.9; % (chemical shift) deltaW_B in [ppm} P.R2B=30; % transversal relaxation rate [s^-1] Now the CEST sequence parameters are defined % sequence parameters P.Zi=1; % Z initial, in units of thermal M0, Hyperpol.: 10^4 P.FREQ=300; % [MHz] I use ppm and µT, therefore gamma=267.5153; P.B1=2; % [µT] P.tp=5; % pulse duration = saturation time [s] P.xZspec= [-5:0.1:5]; % ppm Now the function Z_cw(P) is called and plotted: figure(32), plot(P.xZspec,Z_cw(P),'r-') ; hold on; ===== function Z_cw(P) ===== {{ :logo_dkfz.png?direct&180|powered by DKFZ}}