====== Analytic Z-spectra water, CEST - cw ======
Here you find analytic solutions of the Bloch-McConnell equations describing Z-spectra.
This is the R1ρ-model as published in **Zaiss and Bachert (2013), NMR Biomed., 26: 507–518. [[http://onlinelibrary.wiley.com/doi/10.1002/nbm.2887/abstract|doi: 10.1002/nbm.2887]]**. {{ :z_cw_b1.png?nolink&300|}}
It is a very lean code to give you a tool illustrating the principal behaviour of a CEST effect and its interaction with the direct water saturation.
Dowload zipped Matlab implementations [[https://github.com/cest-sources/Z-cw/archive/master.zip|here]] or find the package on [[https://github.com/cest-sources/Z-cw|github.com/cest-sources/Z-cw]]
====== Tutorial ======
{{youtube>bSv7H7lUnTg?640x480|Tutorial: 2 minutes for 2 pools}}
===== The code ======
=== BATCH_Z_cw ===
First the pool parameters are defined in the parameter struct P:
%% SETUP
%pool system parameters
%water pool A
P.R1A=1/3; % longitudinalrelaxation rate [s^-1]
P.R2A=2; % transversal relaxation rate [s^-1]
P.dwA=0; %deltaW_A in [ppm]
%CEST pool B
P.fB=0.001; % proton fraction: [water protons]/[CEST agent protons]
P.kBA=200; % exchange rate [s^-1]
P.dwB=1.9; % (chemical shift) deltaW_B in [ppm}
P.R2B=30; % transversal relaxation rate [s^-1]
Now the CEST sequence parameters are defined
% sequence parameters
P.Zi=1; % Z initial, in units of thermal M0, Hyperpol.: 10^4
P.FREQ=300; % [MHz] I use ppm and µT, therefore gamma=267.5153;
P.B1=2; % [µT]
P.tp=5; % pulse duration = saturation time [s]
P.xZspec= [-5:0.1:5]; % ppm
Now the function Z_cw(P) is called and plotted:
figure(32), plot(P.xZspec,Z_cw(P),'r-') ; hold on;
=== function Z_cw(P) ===
{{ :logo_dkfz.png?direct&180|powered by DKFZ}}