====== Analytic Z-spectra water, CEST - cw ====== Here you find analytic solutions of the Bloch-McConnell equations describing Z-spectra. This is the R-model as published in **Zaiss and Bachert (2013), NMR Biomed., 26: 507–518. [[http://onlinelibrary.wiley.com/doi/10.1002/nbm.2887/abstract|doi: 10.1002/nbm.2887]]**. {{ :z_cw_b1.png?nolink&300|}} It is a very lean code to give you a tool illustrating the principal behaviour of a CEST effect and its interaction with the direct water saturation. Dowload zipped Matlab implementations [[https://github.com/cest-sources/Z-cw/archive/master.zip|here]] or find the package on [[https://github.com/cest-sources/Z-cw|github.com/cest-sources/Z-cw]] ====== Tutorial ====== {{youtube>bSv7H7lUnTg?640x480|Tutorial: 2 minutes for 2 pools}} ===== The code ====== === BATCH_Z_cw === First the pool parameters are defined in the parameter struct P: %% SETUP %pool system parameters %water pool A P.R1A=1/3; % longitudinalrelaxation rate [s^-1] P.R2A=2; % transversal relaxation rate [s^-1] P.dwA=0; %deltaW_A in [ppm] %CEST pool B P.fB=0.001; % proton fraction: [water protons]/[CEST agent protons] P.kBA=200; % exchange rate [s^-1] P.dwB=1.9; % (chemical shift) deltaW_B in [ppm} P.R2B=30; % transversal relaxation rate [s^-1] Now the CEST sequence parameters are defined % sequence parameters P.Zi=1; % Z initial, in units of thermal M0, Hyperpol.: 10^4 P.FREQ=300; % [MHz] I use ppm and µT, therefore gamma=267.5153; P.B1=2; % [µT] P.tp=5; % pulse duration = saturation time [s] P.xZspec= [-5:0.1:5]; % ppm Now the function Z_cw(P) is called and plotted: figure(32), plot(P.xZspec,Z_cw(P),'r-') ; hold on; === function Z_cw(P) === {{ :logo_dkfz.png?direct&180|powered by DKFZ}}